Cdc14 Phosphatase Induces rDNA Condensation and Resolves Cohesin-Independent Cohesion during Budding Yeast Anaphase

نویسندگان

  • Matt Sullivan
  • Toru Higuchi
  • Vittorio L Katis
  • Frank Uhlmann
چکیده

At anaphase onset, the protease separase triggers chromosome segregation by cleaving the chromosomal cohesin complex. Here, we show that cohesin destruction in metaphase is sufficient for segregation of much of the budding yeast genome, but not of the long arm of chromosome XII that contains the rDNA repeats. rDNA in metaphase, unlike most other sequences, remains in an undercondensed and topologically entangled state. Separase, concomitantly with cleaving cohesin, activates the phosphatase Cdc14. We find that Cdc14 exerts two effects on rDNA, both mediated by the condensin complex. Lengthwise condensation of rDNA shortens the chromosome XII arm sufficiently for segregation. This condensation depends on the aurora B kinase complex. Independently of condensation, Cdc14 induces condensin-dependent resolution of cohesin-independent rDNA linkage. Cdc14-dependent sister chromatid resolution at the rDNA could introduce a temporal order to chromosome segregation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cdc14 and Condensin Control the Dissolution of Cohesin-Independent Chromosome Linkages at Repeated DNA

Chromosome segregation is triggered by the cleavage of cohesins by separase. Here we show that in budding yeast separation of the ribosomal DNA (rDNA) and telomeres also requires Cdc14, a protein phosphatase known for its role in mitotic exit. Cdc14 shares this role with the FEAR network, which activates Cdc14 during early anaphase, but not the mitotic exit network, which promotes Cdc14 activit...

متن کامل

Sli15INCENP Dephosphorylation Prevents Mitotic Checkpoint Reengagement Due to Loss of Tension at Anaphase Onset

The mitotic checkpoint, also known as the spindle assembly checkpoint, delays anaphase onset until all chromosomes have reached bipolar tension on the mitotic spindle [1-3]. Once this is achieved, the protease separase is activated to cleave the chromosomal cohesin complex, thereby triggering anaphase. Cohesin cleavage releases tension between sister chromatids, but why the mitotic checkpoint n...

متن کامل

A Nucleolus-Localized Activator of Cdc14 Phosphatase Supports rDNA Segregation in Yeast Mitosis

Cdc14 phosphatase is an important regulator of mitosis in budding yeast. Cdc14 antagonizes cyclin-dependent kinases and promotes multiple postmetaphase events, including segregation of the ribosomal RNA gene array (rDNA) and the nucleolus assembled around this gene cluster. During most of the cell cycle, Cdc14 is anchored to the nucleolus and kept inactive by binding to Net1 (also known as Cfi1...

متن کامل

The budding yeast PP2ACdc55 protein phosphatase prevents the onset of anaphase in response to morphogenetic defects

Faithful chromosome transmission requires establishment of sister chromatid cohesion during S phase, followed by its removal at anaphase onset. Sister chromatids are tethered together by cohesin, which is displaced from chromosomes through cleavage of its Mcd1 subunit by the separase protease. Separase is in turn inhibited, up to this moment, by securin. Budding yeast cells respond to morphogen...

متن کامل

Spindle-independent condensation-mediated segregation of yeast ribosomal DNA in late anaphase

Mitotic cell division involves the equal segregation of all chromosomes during anaphase. The presence of ribosomal DNA (rDNA) repeats on the right arm of chromosome XII makes it the longest in the budding yeast genome. Previously, we identified a stage during yeast anaphase when rDNA is stretched across the mother and daughter cells. Here, we show that resolution of sister rDNAs is achieved by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 117  شماره 

صفحات  -

تاریخ انتشار 2004